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In this paper, the properties of the generalized Euler-Frobenius polynomial
nn(-, q) are studied. It is proved that its zeroes are separated by the factor q and
their asymptotic behavior, as q --> 00, is given. As a consequence, it is shown that
least squares spline approximation on a biinfinite geometric mesh can be bounded
independently of the (local) mesh ratio q and that the norm of the inverse of the
corresponding order k B-spline Gram matrix decreases monotonically to 2k - I for
large q. as q --> 00.

1. INTRODUCTION

The exponential Euler polynomial A ix; t) played an important role in the
analysis of cardinal polynomial splines. This is much due to the fact that the
spline defined by the functional relation

~n(x) := An(x; A.),

~n(x+ 1):=A.~n(x),

x E [0, If,
otherwise,

vanishes at all integers for particular values of A, the zeroes of the
Euler-Frobenius polynomial IIp.. ) := (1 - A)"An(O;A.). A beautiful survey of
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cardinal polynomial splines can be found in [7]. Micchelli [6] showed that
the essential properties of cardinal polynomial splines can be extended to the
more general case of cardinal !f'-splines. By applying his results to the
particular differential operator

n

!f't(D) := rI (D - it),
;=0

d
D:= dx' tER

and to the corresponding generalized exponential Euler polynomial

1 n . ( n) qlX
An(x;A,q):=---'-tn L (-Y- 1

• 1_"
n. 1=0 I q I\,

(1.1 )

he analyzed spline interpolation at knots on the biinfinite geometric mesh

(1.2)

In this case, the generalized Euler-Frobenius polynomial is given by

and satisfies a "difference-delay" equation [6]

1
IIn+1(.1; q) = (n + 1) t ((1 - A) qnIIn(q-IA;q) - (qn+ I - A) IIn(A; q»,

n = 0, I,.... (1.4 )

A recent paper by Hollig [5] shows that more general spline interpolation
problems on a biinfinite geometric mesh can be understood in terms of
properties of IIn(A; q).

The main part of the present paper is an outline of some new charac
teristics of lIn()..; q). A simple but far reaching property is the following. The
zeroes J.ln,l(q) are separated by a factor q. This produces the bounds

for some properly chosen positive const l , const2 •

In Section 3, the properties developed are used in an analysis of spline
interpolation PI to I defined by the conditions

f MI,rPI= f Mt.J,
I I

all i,
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on a biinfinite geometric mesh. In this way, some of the results in [5] are
obtained by a different approach.

2. THE ZEROES OF IIn()'; q)

We start the section with the symmetries of the generalized
Euler-Frobenius polynomial. In addition to the description (1.3), we shall
use

1
Yn :='-tn 'n.

to emphasize its polynomial character in A.

THEOREM 2.1. The polynomial IIn().; q) satisfies

The coefficients an,i(q) can be recurrently computed by

(2.1 )

where

Proof. For n = 1 or ). = 0, (2.1) obviously holds. Assume ). "* 0, n ~ 2.
Then

=Yn ito (_)n-i (~)qi).-I J] (qi_).),

Uoi

since the nth order finite difference of a constant vanishes. But

n

qi).-I n (qi-).) = (_t).n-lq-n(n-Il/2
j=O
Noi

which completes the proof of (2.1).

n

n
j=O

J*n-i
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In terms of the an.i(q), the recurrence relation (1.4) reads

to an+l ,i(q)..1.i=-(q-l)-1 ((1-A)qn ~~ an,i(q)q-iAi

- (qn+ 1 - A) ~t~ an.i(q)Ai)

= (q - 1)-1 to (qn+ 1- qn-i) an.i(q)

+ (qn+ I-i _ 1) an.i-1(q)) Ai,

if we define an, _I (q) = an.n(q) := 0, and this confirms (2.2). I

COROLLARY 2.1. The coefficients an,i(q) satisfy

a .(q) = qn(n-2i-I)/2a .(q)
n,l n.n-l-l ,

andfor n ~ 2
i(n-I-il

an.i(q)=q(n-i)(n-l-ill2 L
j=O

The integer coefficients a~:i are symmetric

(2.3)

(2.4)

U) _ (i(n-I-i)-j)
an.i - an.i ,

In particular,

all j. (2.5)

a(O). = (n ~ 1 ) ,
n.l I

(
n-l) (n-2) (n-2)a~~~ = (n - 2) i - i + 1 - i - 2 .

(2.6)

It is easy to prove (2.3)-(2.6) by using (2.2) and mathematical induction.
We shall omit this step.

From now on we think of the zeroes of IIn(·; q) as functions of q. It is
proved in [6] that the n - 1 zeroes J1. n,i(q), i = 1,..., n - 1, of IIn(·; q) are all
simple and real, in fact negative. They satisfy

!J.n.i(q) < 0,
d
dqJ1.n.;(q) <0, (2.7)

lim !J.n i(q) = 0,
q-+O + '

lim !J.n,lq) = -00,
q-->oo

all i, (2.8)
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Pn,M- 1
) =P;;,~-i(q),

We shall think of the Pn,i(q) as ordered,

all i, (2,9)

Pn,l(q) <Pn,2(q) < ... <Pn,n-l(q) < 0.

Then, additionally, by [4] and (2.15)

(2.10)

!!..- (Pn,n-I(q») < 0,
dq q

(2.11 )

The symmetry (2.9) tells us that we can restrict our discussion to the case
q ~ 1.

LEMMA 2.1. Let q ~ 1. Then

Pn,i-l (q) <P'l+ I,i(q) <qPn,i(q), i = 2, 3,.." n - 1; n = 2, 3,,,.. (2,12)

Proof Suppose Pn,i-l(q) < qPn,i(q) holds for some n. By hypothesis then

sign(lln(q-1A; q» , sign(lln(A; q» <0, AE [qPn,;(q),Pn,i(q)],

and from (1.4)

(2.13 )

Butpn,i(q) is a zero of lln(,;q), thus another look at (1.4) tells us

sign(lln+Mpn,i(q); q». sign(lln+l(JLn,i_l(q); q» < 0,

and there is at least one zero of IIn +1(' ; q) in each of the intervals

all i. (2.14 )

Also by (1.4)

sign(lln+ 1(0+; q» . sign(lln+ l(un,n-I(q); q» <0,

sign(lln+ l(un.l(q); q» . sign(lln+ 1(-00; q» < 0,

and this reveals the position of the smallest and the largest zero of
lln+I(·;q). However, lln+l(·;q) is a polynomial of degree <n+ 1, and in
each of the intervals (2.14) there is exactly one zero, Pn + I,M).

Now (2.15) brings the induction hypothesis to the next level and (2.12) is
proved since it obviously holds for n = 2. I

It is easy to deduce the following interesting properties of Pn,i(q).

640/32/4-7
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COROLLARY 2.2. The zeroes f.Jn.i(q) of Iln(·; q) have the following
properties

In particular

and for i ~ [(n - 1)/2]

all i. (2.15)

(2.16)

( )
n-if.Jn,i q < -q ,

as well as

(2.17)

.!!.- (f.Jn'i(q) ) >0,
dq qn

all i. (2.18)

Proof. By (2.1)

iliA; q) = 0

Since we have ordered f.Jn.;(q) as in (2.10), (2.15) follows. Equation (2.16) is
a special case of (2.15). From (2.15) and (2.12) we find

which implies (2.17). Finally, combining (2.15) and (2.7) we obtain
(2.18). I

THEOREM 2.2. Let q ~ 1. Then for i = 1,2,... , [(n - 1)/2]

1 . 1 .
- - q' ~ f.Jn.n-i(q) ~ - - q'.

c2 c\

The constants cl' C2 do not depend on q and i, and

(2.19)

(2.20)

c\ = If.Jn .\(l)j,

\

n+1
n-1 '

1 < C2 ~
n+2
n-2 '

n odd

n even

(2.21)

(2.22)



GENERALIZED EULER-FROBENIUS POLYNOMIAL 333

Proof It is enough to prove (2.19), since (2.20) follows from it by
(2.15). Observe from (2.11) that f.Jn,l(q) ~f.Jn.I(I) qn-I. Then by Lemma 2.1

and the left inequality is proved,
Since f.Jn,;(q)/qn-; is a continuous function on [I, oo[ and satisfies (2.17),

while by Theorem 2.4

I
, f.Jn,;(q) _ n - i
1m ' -- ,

q-HX) qn I i

there obviously exists a constant 1 < c2 ~ min;(n - i)/i independent of q such
that the right inequality of (2.19) holds. In particular note that
1 < c2 ~ k/(k - 1) for n = 2k - 1. I

Theorem 2.2 bounds f.Jn,i(q) as functions of q. However, it is of interest
also to ask the opposite question: suppose f.Jn.i(if) =f.Jn,i-l(q). What can we
say about q, ij? We believe its answer is beautiful enough to deserve its place
in the paper.

THEOREM 2.3, There exist a constant, const < 1, so that, for any q, ij or
i,

f.Jn,i(ij) = f.Jn,; -I (q)
implies

qjij ~ const < 1.

Proof Let q, ij satisfy (2.23) for some i, Then (2.18) gives us

(2.23)

(~)n < (~)n,q:=asolutionof (~)n = f.J~,;(~\ =:p;(q).
q q q f.Jn,l-lq

The function p;(q) is a continuous function of q, and by Lemma 2.1 and
(2.9)

q ~ 1 : p;(q) < l/q,

q< 1 :p;(q)=f.Jn,n-;+I(I/q) <q.
f.J n,n-;(I/q)

Thus p;(O+) = p;(00) = O. Clearly we find

canst = m~x max Pi(q) < 1. I
I q
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The last part of this section we devote to the asymptotic behavior of
f.ln,M) as q~ 00.

THEOREM 2.4. For i = 1,2,... , r(n - 1)/21,

Here

• (.) 2I· I . 1 . 2
f.lnn-i(q)=---.q'+ --. -Cniq'- +O(q'-).

, n-l n-l •

(2.24)

(2.25)

O~Cni:='2C )( 1)( . )[(n-2i)4+(6i-l)(n-2i)3
. /1+1 n-l n-I+l

+4i(3i - 1)(n - 2if + 4i2(2i - 1)(n - 2i)]. (2.26)

In particular,

(2k - 1)2
C2k-l.k-l = k(k - 1)2(k + 1) . (2.27)

Proof By (2.15), it is enough to prove (2.24). Let A=f.ln,M). By (2.8)
and (2.15)

lim f.l n.; = 0, all i.
q--+CfJ qn

Thus for some a*-O and some r > 0

(2.28)

Since the coefficients an.;(q) are polynomials in q, and after a proper
normalization in l/q, r is an integer. From Corollary 2.1 we conclude that as
q ~ 00

n-l n-lL an.i(q) Ai::::: L q(n+il(n-l-il/2+(n- r li

i=O i=O

An inspection of the exponent

VI(i, r) := (n + O(n - 1 - 0/2 + (n - r) i
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(
2(n - r) - 1 .) (2(n - r) - 1 .)

'II 2 +I, r = 'II 2 - I, r ,

AI 'II(i, r) := 'II(i + 1, r) - 'II(i, r) = n - r - i-I.

335

Since A I 'II(n - r - 1, r) = 0, the leading power of q occurs in the terms
i = n - r - 1, n - r. Thus (2.29) can vanish precisely for r = 1,2,,,., n - 1 as
q -> 00, and we conclude from (2.10): f.1 n,M) = O(qn-i). By using (2.6), it is
now straightforward to complete the proof. I

3. POLYNOMIAL SPLINES ON A BIINFINITE GEOMETRIC MESH

To start more generally, let t := (ti)~~ be a strictly increasing biinfinite
sequence with t±oo := limi-+±oo ti, 1:= ]t_ oo ' t+ oo [' Let further

mSn.p):= {f:fE cn- 2(I) n Loo(I), f!JI;.li+l[ is a polynomial of degree < n}

be the normed linear space of polynomial splines of order n with the
breakpoint sequence t and the norm Ilfll := SUPxEI If(x)l. Let r, kEN be
given integers, 0 ~ r < 2k, 0 <k. Consider the map

(3.1 )

associated with interpolation conditions

r> O.

Here, as usual the B-splines of order k with knots t are defined by

Mik(X) := k[ti, ti+p"', ti+k](' _X)~-l ,

1
N ik := k (t i +k - ti)Mik ·

The interpolation problem: for given b := (bi)t=o:.oo E 100 , find fE S2k-r,l!)
such that

R,f=b

is by [2] correct, if R r is invertible, i.e., the Gramian (totally positive) matrix

G '= ("". /IJ. 2k ):+-.00r· 'rI,rJ-"J. -r I.J=-C()

is boundedly invertible.
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Let us restrict ourselves now to a particular geometric knot sequence
t:= (l)~~ for some q E ]0, co[. In this case the matrix is a Toeplitz matrix
and is boundedly invertible iff the characteristic polynomial

L: JJ¢i,r Nj,2k_r
j

(3.2)

has no zero on the unit circle IAI= 1, or since Gr is totally positive, at
A= - 1. The case r = 0 is treated in [6], where it is proved that

2k-2
IIZk_1(A; q) = L Aj~2k-l,oNj,2k = A2k-i-1 LAj~i.oNj,2k' (3.3)

j=O J

and from properties of the generalized Euler-Frobenius polynomial deter
mined when Ro is invertible. A nice argument shown to us by de Boor [3]
leads to the conclusion: The characteristic polynomial (3.2) has -1 as a zero
iff

for any r, 0 ~ r ~ 2k - 1. A recent result of Hollig [5] states

IIG-III =h( ):= IIIlk-1(qr;q) ,.
r 00 r q n 2k _ I ( _qr; q)

(3.4 )

He proves that hr(q) is bounded independently of q and G" r =1= k - 1, k is
not boundedly invertible for at least one q E [1, 00 [. We give here an alter
native proof by simply rereading Theorem 2.2. By Theorem 2.1 we can
restrict to the case 0 ~ r ~ k - 1.

The equation

lli(q) :=lli.k,r(q) :=P2k_l,i(q)!qr=-1 (3.5)

has (at least one) solution q E ]0, 00 [ exactly for r + 1 ~ i ~ 2k - 2 - r. Put

Qr := {ql q is a solution of (3.5)}

and IQrl := number of elements in Qr' Choose r + 1 ~ i ~ k - 1. Then

2k-l-r-i& ()/ 2k-l-r-i- c1 q '<:: lli q "'" - c2q ,

- c:;lq-r+i ~ lli(q) ~ - Cjlq-r+i,
(3.6)
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If q> 1 obviously there is no solution to (3.5) since this would imply
i> 2k - r. In the case q ~ 1 there is q E Qr exactly for i> r + 1. Since

iff '12k-I-i(l/q) = - 1

our claim is confirmed.
We note that the case of a finite partition [1] suggests that R r'

r * k - 1, k is not invertible for all q, but as already pointed out in [2] the
same proof can not be applied since the quotients

are bounded independently of q (by r).
Let now q> 1. From (2.15) we get

(
Znk-Zlqk-I12k_I,M) I kn-I wM)+ 1

hk q) = hk_l(q) = k -
i=1 q+l1zk-I,M) i=l wlq)-1

with

(3.7)

(3.9)

wM) := - (;izk-I,i(q) +112k_,,2k_I_i(q»/(qk +qk-I). (3.8)

From Theorem 2.2 we conclude

-()._ ()/k' ()'( k-I-i+ -I -k+I+i)/2_' ()wiq ·--112k-I,iq q 9- Wiq 9- czq Cz q -.wiq

and

Since hk_t(q) is decreasing as a function of q, this suggests that hk_l(q) is
too. However, we succeeded in proving this only as q --+ 00, as ,a consequence
of Theorem 2.4 and (3.7), (3.8).

THEOREM 3.5. For °~ r ~ 2k - 1, the Gramian matrix Gr is not boun
dedly invertible for q E Q" and IQrl = IQ2k-I-rl >2(k - 1 - r),°~ r ~ k - 1. In particular, IQkl = IQk-II = 0, and the norm hk(q) for
q E [1, 00 [ satisfies

_ (C2+ 1) 2(k-l)

hk(q) ~ hk(q) <hk(q) < C
2

_ 1 ;

also as q --+ 00

hk(q) = (2k - 1)(1 + 4(k - 2)/(k + 1) q-I + O(q-Z». (3.10)



338 FENG AND KOZAK

ACKNOWLEDGMENTS

We thank Professor Carl de Boor for many friendly and fertile discussions that helped us in
understanding spline functions, and also led to this paper. We are also grateful for his careful
critical reading of the manuscript.

REFERENCES

1. C. DE BOOR, On bounding spline interpolation, J. Approx. Theory 14 (1975), 191-203.
2. C. DE BOOR, What is the main diagonal of a biinfinite band matrix? in "Quantitative

Approximation" (R. De Vore and K. Scherer, Eds.) pp. 11-23, Academic Press, New
York, 1980.

3. C. DE BOOR, private communication.
4. S. FRIEDLAND AND C. A. MICCHELLI, Bounds on the solutions of difference equations and

spline interpolation at knots, Linear Algebra Appl. 20 (1978), 219-251.
5. K. HOLLIG, Loo-boundedness of L 2-projections on splines for a geometric mesh, J. Approx.

Theory, in press.
6. C. A. MICCHELLI, Cardinal 5.t'-splines, in "Studies in Spline Functions and Approximation

Theory," pp. 208-250, Academic Press, New York, 1976.
7. 1. J. SCHOENBERG, "Cardinal Spline Interpolation," Regional Conference Series in Applied

Mathematics, Vol. 12, SIAM, Philadelphia, 1973.


